分類

房產

2024 年 4 月 21 日

查包養網新华全媒+丨为卫星“量体裁衣”的热控团队_中国网

科研人员对制作完成的卫星多层隔热组件进行检查(4月2日摄)。

手拿剪刀、脚踩缝纫机,工作台旁摆放着“布料”滚筒和纺织线卷……走进位于长春的长光卫星技术股份有限公司空间环境研究室热控实施工包養網艺中心,这酷似裁缝铺的场景让人一时有些恍惚。

长光卫星技术股份有限公司是中国第一家商业遥感卫星公司。目前,由该公司承制并发射的“吉林一号”在轨卫星数量已达108颗,是全球最大的亚米级商业遥感卫星星座,逐渐成为全球重要的航天遥感信息来源。

热控实施工艺中心负责人吴清爽介包養網價格绍:“我们在制作为卫星隔热保温的多层隔热组件,大家看到卫星表层的‘金色外衣’就是出自我们之手。”

卫星在轨运行过程中会面临近300摄氏度的温差。吴包養網清爽所在团队制作、部署的热控产品像保暖衣物一样包覆在卫星外表,减少温度变化对星上仪器设备的影响,保障卫星在太空中的工作。

热控实施工作贯穿于卫星包養研制的所有环节,需根据每颗卫星的结构特点、热控措施进行不同的设计和部署,每个细节稍有疏忽都可能会影响卫星性能指标。热控团队又有个别称叫“卫星高定服装设计师”。吴清爽说:“我们的工作也需要‘量体裁衣’,这样的‘衣服’穿起来才能不怕冷又不怕热包養網價格。”

新华社记者 许畅 摄

<  1  2  3  4  5  6  7  8  9  10  11  

2024 年 4 月 21 日

查包養心得中国海洋经济复苏强劲_中国网

2023年,全国海洋生产总值较上年增长6.0%——

中国海洋经济复苏强劲

记者近日从自然资源部获悉,2023年全国海洋生包養網产总值99097亿元,比上年增长6.0%,增速比国内生产总值高0.8个百分点;占国内生产总值比重为7.9%,比上年增加0.1个百分点。

“海洋经济强劲复苏助力国民经济回升向好。”国家海洋信息中心副主任崔晓健表示,2023年海洋领域宏观政策持续显效,资源供给能力稳步提升,自主创新能力持续增强,海洋经济复苏强劲、量质齐升,主要体现在以下方面:

——海洋制造业增速高于全国。2023年,海洋制造业增加值29861亿元,比上年增长7.0%,比全国制造业增速高2个百分点。其中,海洋船舶工业增加值1150亿元,比上年增长17.6%,船舶制造高端化、智能化、绿色化发展扎实推进,已进入产品全谱系发展新时期。海洋工程装备制造业发展良好,国际市场份额继续保持全球领先,全年实现增加值872亿元,比上年增长5.9%。

——海洋服务业助推国民经济增长。2023年,海洋服务业增加值58968亿元,占国内生产总值比重为4.7%,拉动国民经济增长0.3个百分点,为国民经济增长助力。接触型、聚集型服务业恢复较快,海洋交通运输业增加值7623亿元,比上年增长8.5%,沿海港口货物吞吐量近110亿吨。海洋旅游业增加值14735亿元,比上年增长10.0%,居民旅游需求得到释放,多家邮轮港实现邮轮复航。

——海洋能源、食物和水资源供给能力稳步提升。一是海洋油气增储上产成效显著,渤中26-6亿吨级油田等勘探取得新发现,海洋原油、天然气产量同比分别增长5包養平台推薦.8%和9.1%,海洋原油增产量连续4年占全国原油总增量的60%以上,成为能源上产的关键增量。二是深远海养殖加快推进,优质海产品供给能力不断提高,海洋水产品产量超3500万吨,同比增长近3%,国家级海洋牧场示范区数量达到169个,比2022年增加16个,沿海各地深远海养殖装备制造和投产运营不断取得新进展。三是海水淡化工程规模持续扩大,海水淡化规模化利用积极推进,天津、山东、浙江等地海水淡化项目稳步推进,在建和新开工项目规模超30万吨/日。

三大需求拉动海洋经济量质齐升。从消费看,海洋领域消费持续恢复向好。“随着扩内需、促消费各项包養網政策措施落地显效,居民消费需求加快释放,海洋旅游消费市场明显回暖,带动沿海地区住宿、餐饮、交通等服务性消费快速恢复。”崔晓健介绍,2023年海洋客运量、海洋旅客周转量同比分别增长122.3%、125.4%。海洋旅游消费趋向多元化,融合业态不断涌现,“演艺+海洋旅游”“博物馆+海洋旅游”等模式成为新热点。居民饮食逐步向品质化升级,海洋水产品消费市场供需两旺。2023年全国水产品进口额同比增长4.7%,海洋水产品价格同比上涨3.9%。

从投资看,海洋固定资产投资增势良好。在港口建设方面,2023年1至11月,沿海港口固定资产投资完成835亿元,同比增长16.8%,增速较上年同期加快10.5个百分点,港口绿色化和智能化水平进一步提升。

从对外贸易看,2023年中国海洋船舶工业的海船完工量、新接海船订单量、手持海船订单量三大指标全球领先,船舶出口至191个国家和地区,出口金额同比增长35.4%。随着中国新能源汽车出口规模大幅增长,汽车运输船新接订单量占全球总量的82.7%。2023年,全国沿海港口国际航线集装箱吞吐量同比增长超4%,沿海港口完成外贸货物吞吐量同比增长近10%。

崔晓健认包養为,面对2024年的挑战,在推动海洋经济的发展中,要坚持稳中求进、以进促稳、先立后破,助力海洋经济在高质量发展轨道上稳健前行。(记者孔德晨)

2024 年 4 月 21 日

长期海洋性冰川与环境监测研究查包養心得支撑区域可持续发展_中国网

中国网/中国发展门户网讯 全球海洋性冰川(温冰川),受海洋气候影响显著,对全球变暖响应敏感。玉龙雪山冰川位于青藏高原东南缘,因夏、秋季受南亚季风和东亚季风双重影响,其属性亦为海洋性冰川。我国海洋性冰川进入性相对便捷,且距四川、重庆等旅游客源市场较近,是冰川旅游开发较早区域,经济效益显著。然而,与大陆性冰川(冷冰川)相比,海洋性冰川受季风影响,冰温高、流速快,其冰川消退速率、属性变化更快、更强,其失稳风险及潜在影响更大。较小的温升和降水波动会导致强烈的冰川变化,其研究对于揭示全球变化具有指示作用。为促使该区域可持续发展,对其冰冻圈与环境进行定位监测具有强烈的现实需求。

中国科学院玉龙雪山冰冻圈与可持续发展野外科学观测研究站(以下简称“玉龙雪山站”)位于云南省丽江市玉龙县白沙镇,始建于2006年,是我国第一个以海洋性冰川与环境为监测、研究对象的野外站。玉龙雪山位于青藏高原东南缘,是欧亚大陆距赤道最近、规模最大的现代冰川分布区,长期定位监测对于揭示低纬高海拔冰川变化的过程机理意义重大。经多年发展,玉龙雪包養網排名山站在野外观测平台建设、海洋性冰川变化过程与机理、海洋性冰川变化的环境效应与影响、冰川旅游服务、冰湖溃决灾害等协同研究方面进展显著,研究成果在国内外产生了重要影响,极大地推动了冰冻圈与可持续发展协同研究进程,为统筹区域水资源优化配置、冰雪旅游资源开发与冰冻圈防灾减灾提供了理论依据与决策支持。

建成了中国海洋性冰川与环境综合观测网络体系

建站以来,在冰冻圈科学目标和国家重大社会需求牵引下,玉龙雪山站坚持“观测、研究、示范、服务”方针,逐步建成了“一站四区”(玉龙雪山站,梅里雪山、岗日嘎布、贡嘎雪山和达古雪山研究区)空间观测网络体系,并强化了整个海洋性冰川区冰冻圈与可持续发展的协同观测与研究能力。其中,玉龙雪山观测体系包括海拔2 049—4 850 m的5个梯度式气象监测系统,1处冰川变化定位观测场,1套冰川实时监测系统,1套冰雪化学特征观测系统,2处冰川水文观测场,3处大气环境监测系统。其他4个研究区均布设有气象站、水文站,对其冰川、气象与水文进行定位监测。岗日嘎布研究区重点揭示冰川与冰湖相互作用机制,梅里雪山研究区重在明晰冰雪径流对地下水的补给作用,贡嘎雪山研究区旨在揭示表碛覆盖对冰川物质亏损的抑制作用,达古雪山冰川区重点关注冰雪消融过程对可持续旅游的综合影响。在此观测基础包養平台推薦上,玉龙雪山站研发了冰冻圈与可持续发展数据可视化平台,实现了“一站四区”气象、冰川与水文观测数据的实时在线传输功能。

玉龙雪山站注重观测方法和数据资料的质量控制过程,加强与国家科技资源共享服务平台间的有机衔接,有序开展野外观测数据的汇交与共享,有效推动了科学设施、科学数据等科技资源的开放程度。

开展了白水河1号定位监测冰川与全球参照冰川物质平衡监测和对比研究

基于长期定位监测,建立了亚欧大陆距赤道最近、时间序列最长的海洋性冰川物质平衡数据集,协同对比了全球参照冰川物质平衡,为区域水资源利用规划包養網起到了重要作用。

自2008年,在玉龙雪山白水河1号冰川上布设物质平衡花杆,开展物质平衡的连续监测工作。利用等高线法、消融曲线法和大地测量法,分别计算2000—2010年间玉龙雪山白水河1号冰川多年平均物质平衡(–0.99、–1.01和–1.18 m w.e.),结果基本一致。1952—2017年间,白水河1号冰川物质平衡波动变化明显,其物质平衡介于–1.94—2.26 m w.e.,冰川累计物质平衡为–27.45 m w.e.,表明过去几十年冰川物质亏损严重(图2)。在此基础上,揭示了海洋性冰川快速变化机理:冰川区固态降水减弱、冰体消融增加;冰川表碛覆盖率增加,降低了冰雪反照率;冰面破碎化增加了冰川消融面积;冰体温度快速升高;消融期粒雪盆液态降水增加。20世纪50—60年代以来,中国海洋性冰川区岗日嘎布、达古雪山、玉龙雪山、梅里雪山冰川面积缩减率均超过了38%,远高于全国18%的平均水平。1959—2015年间,海洋性冰川物质平衡变化剧烈,年物质平衡在–1.80—0.44 m w.e.区间波动,年平均物质平衡递减率为–0.037 m w.e./a。其中,白水河1号冰川、乌鲁木齐河源1号冰川和全球参照冰川均有相似的冰川物质亏损趋势。在过去近60年间,平均物质亏损速率分别为0.03 、0.02 和0.01 m w.e./a。白水河1号冰川消融趋势明显快于乌鲁木齐河源1号冰川,同时也快于全球参照冰川物质亏损速率。2022年,白水河1号冰川仍处于物质严重亏损状态,物质平衡达–1.65 m w.e.。

揭示了海洋性冰川变化的水文、细菌微生物及其气候环境效应

冰雪融水对地表径流及其地下水的补给作用。选取梅里雪山明永河流域、玉龙雪山白水河流域和漾弓江流域,结合气象、水文、同位素等数据,建立同位素径流分割模型,量化分析了不同流域冰雪融水对地表径流的贡献。结果表明,消融期(6—9月)冰雪融水占明永河径流的58.4%,非消融期地下水所占比例最高且相对稳定(60.0%)。季风前雪融水对白水河流域地表径流的贡献为38.3%,季风期冰川融水对地表径流的贡献为61.1%。季风前雪融水对漾弓江河水的贡献率为47.9%,季风期冰川融水占漾弓江地表径流量的6.8%。采用质量平衡方程将明永河地下水分为冰川融水和雨水,发现降水和冰川融水对明永河流域地下水补给贡献分别为54%±22%和46%±22%,发现了非季风降水主导季风海洋性冰川区地下水补给的新现象。

冰川及其退缩迹地细菌群落结构差异及其影响因素。冰川的低温、寡营养、强辐射等特征使其成为了一个天然、独特的微生物资源保藏库。不同生境(如雪、冰、融水、土壤、冰尘等)中的细菌群落存在着明显的差异。冰雪体细菌群落丰度通常低于融水、土壤、冰尘等生境。中国冰川雪坑中微生物数量、多样性、群落组成总体变化呈现“北高南低”、大陆性冰川细菌数量(可培养)高于海洋性冰川的特征。白水河1号冰川雪坑中的细菌数量随深度加大而升高,但其多样性和群落结构没有明显变化,优势类群主要为厚壁菌门、放线菌门等。白水河1号冰川融水和退缩迹地土壤中的细菌群落都具有较高的多样性,但群落组成差异较大。融水中主要类群为变形菌门、厚壁菌门和蓝细菌门,而土壤中酸杆菌门、放线菌门、拟杆菌丰度也较高。土壤中的细菌群落多样性和群落结构相似度均高于融水,这种差异与环境理化特征的不同显著相关,其中总有机碳(TOC)、pH值、Fe等多指标对细菌群落有显著影响。协同对比全球典型冰川退缩迹地,发现细菌群落结构同时受到气候与地理格局的综合影响。

冰川吸光性杂质的气候效应。基于长期观测,分析了白水河1号冰川吸光性杂质含量的时空格局、化学转化、富集-淋溶过程与机制,揭示了吸光性杂质的气候效应,评估了黑碳(化石燃料和生物质不完全燃烧产物)对冰川消融的影响机制(图3)。在白水河1号冰川,随着积雪的持续消融,冰面黑碳和有机碳富集,其中黑碳富集更为显著。在不同吸光性杂质浓度情境下,冰面反照率降低的程度不同。其中,黑碳引起的雪冰反照率降低程度最高,在藏东南一些海洋性冰川中黑碳和粉尘可导致反照率降低15%。白水河1号冰川中黑碳对反照率降低的贡献约为10%,导致的辐射强迫可达145 W/m2。总体上,黑碳对冰川反照率降低的贡献高于粉尘。同时,估算了白水河1号冰川中溶解性有机碳含量为1.5 t,无机颗粒态碳7.25 t。这些吸光性杂质的沉降加速了冰川的消融。随着冰川消融,冰川中储存的碳被释放出来,冰川由“碳汇”向“碳源”转变。

长期的监测、试验与研究结果有效服务于区域可持续发展

基于仪器研发、试验示范与模型模拟,为景区旅游安全、景观美化及其水资源利用提供技术支撑。建成国内首个冰川实时监测系统,已对白水河1号冰川冰流速及其物质消融进行实时监测,该系统可为未来冰崩事件的发生提供早期预警。联合丽江市玉龙县气象局开展冬春季人工增雪试验,成效显著,为减缓白水河1号冰川消融起到了积极作用。利用实测数据和水文模型,重建了白水河冰川径流深数据集,量化了海洋性冰川流域冰雪融水对地表径流-地下水的贡献率,为区域水资源优化配置提供了理论参考。

以海洋性冰川旅游服务研究为切入点,揭示了冰川旅游客源市场结构、旅游服务价值及其气候变化影响程度。发现冰雪旅游目的地客源核心市场由发展初期的近域客源市场向成熟期的远域客源市场拓展。利用实地调查和旅行费用法,估算了玉龙雪山冰川旅游服务价值。经计算,玉龙雪山冰川旅游服务总价值为20.33亿—57.18亿元。2016年玉龙雪山冰川旅游服务价值仅18亿元,接近冰川旅游服务总价值最小值,冰川旅游服务提升空间很大。如果冰雪资源消失,至少损失20%—40%的客源。研究成果为其他旅游目的地冰川旅游可持续发展提供了理论依据。

以海洋性冰川-米堆包養網冰川长期监测为基础,综合现场考察、多源影像、无人机、无人船等多技术方法,系统揭示了典型冰湖溃决机理,提出了早期预警与中后期防灾减灾方案。发现,冰内水系溃决和冰川前进乃1988年光谢错溃决之主因,而2020年嘉黎县金乌错冰湖溃决事件则由冰雪崩体、侧碛边坡失稳滑坡体和溃决前该地区持续降雨多因素所致。在此基础上,综合评估了青藏高原潜在危险性冰湖溃决的灾害风险。建议加大海洋性冰川与冰湖相互作用机制的定位监测力度,同时应及早采取泄洪等工程措施以降低高危冰湖溃决风险。

以上研究成果有效服务于区域水资源优化配置、冰雪旅游可持续发展及冰冻圈防灾减灾等重大社会需求。

结语

基于长期的定位监测与数据积累,以冰冻圈科学为引领,积极探索冰冻圈与可持续发展协同研究路径,在冰冻圈变化过程机理、冰冻圈变化的水文水资源效应、生态效应、气候效应及其影响,以及冰冻圈与可持续发展研究方面进展显著。研究结果积极推动和促进了冰冻圈化学、冰冻圈微生物、冰冻圈旅游学、冰冻圈灾害学、冰冻圈人文社会学等冰冻圈科学分支学科形成与发展。

未来,玉龙雪山站拟利用高新技术和方法,以玉龙雪山站观测网络为基础,持续加强海洋性冰川与环境的长期监测,并在冰冻圈与可持续发展协同研究方向方面拓展,紧密围绕玉龙雪山站“冰冻圈变化过程机理、冰冻圈变化的环境效应、冰冻圈与可持续发展”三大领域方向,以冰冻圈变化与可持续发展关键科学问题为切入,综合评估不同时空尺度冰冻圈致利致灾效应,以提出冰冻圈影响区的可持续发展路径。

(作者:王世金、张昺林、郭万钦、燕兴国、马兴刚、王荣军,中国科学院西北生态环境资源研究院 中国科学院玉龙雪山冰冻圈与可持续发展野外科学观测研究站 米堆冰川-光谢错冰包養網湖灾害西藏自治区野外科学观测研究站;康世昌、陈拓、何元庆、杨梅学、李全莲、牛贺文、蒲焘,中国科学院西北生态环境资源研究院中国科学院玉龙雪山冰冻圈与可持续发展野外科学观测研究站;车彦军,中国科学院玉龙雪山冰冻圈与可持续发展野外科学观测研究站 米堆冰川-光谢错冰湖灾害西藏自治区野外科学观测研究站。《中国科学院院刊》供稿)

2024 年 4 月 21 日

拓展“两山”转化路查甜心寶貝包養網径 促进乡村生态振兴_中国网

生态振兴是乡村“五大振兴”之一,是乡村振兴战略和生态文明建设战略的重要结合点。良好的生态环境是农村最大优势和宝贵财富。农村生态环境好了,土地上就会长出“金元宝”,生态就会变成“摇钱树”,田园风光、湖光山色、秀美乡村就可以成为“聚宝盆”,生态农业、森林康养、乡村旅游等就会红火起来。

乡村振兴要加强乡村生态保护修复,持续改善农村人居环境,把生态治理和发展特色产业有机结合起来,做大做强有机农产品生产、乡村旅游、休闲农业等产业,拓宽绿水青山转化金山银山的路径,实现生态“含金量”和发展“含绿量”同步提升。

探索“生态修复+”模式,提升乡村生态福祉。该模式针对自然生态系统被破坏或包養生态功能缺失的乡村地区,统筹生态修复和生态惠民,坚持山水林田湖草沙一体化保护和系统治理,因地制宜发展惠民产业,将生态修复与生态产业发展相结合,在恢复生态系统功能和增加生态供给的同时,将生态产品的价值附着于农产品、工业品、服务产品的价值中,实现百姓富、生态美的有机统一。例如,江苏省徐州市贾汪区将潘安湖采煤塌陷区建成国家湿地公园,为周边区域提供优质生态产品,并带动产业绿色转型与乡村振兴,实现生态、经济、社会等综合效益。

探索“环境整治+”模式,打造宜居宜业和美乡村。该模式针对人居环境“脏乱差”的乡村地区,学习运用“千万工程”经验,以实施农村人居环境整治工程为抓手,以建设和美乡村为导向,统筹推进环境整治与设施建设、产业发展、乡风文明等,解决与农民生产生活息息相关的厕所、污水、垃圾等关键小事,提升乡村美丽“颜值”,培育特色生态产业,让“好风景”成为乡村振兴的“好钱景”。例如,浙江省湖州市安吉县通过20多年持续实施“千万工程”,把全县所有村全部打造成美丽乡村。同时,积极发展观光旅游,推动茶产业等相关产业发展,探索走出一条绿色低碳高质量发展的乡村振兴之路。

探索“生态农业+”模式,推动乡村产业融合发展。该模式针对农业面源污染突出的乡村地区,按照生态工程学原理,推广种养结合、生态健康养殖等方式,推进农业资源利用集约化、投入品减量化、废弃物资源化、产业模式生态化;同时,依托优质农产品、优美自然环境、特色文旅资源等,实施农文旅深度融合工程,发展特色生态产业,打造乡土特色品牌,发展生态旅游新业态,增加农产品附加值和农民收入,推动一、二、三产业融合发展。例如,江苏省苏州市吴中区金庭镇依托区位优势、特色产品和历史文化,发展生态农业,打造洞庭山碧螺春等品牌,培育农事体验和文化旅游,实现农文旅深度融合发展。

探索“清洁能源+”模包養網 花園式,增添乡村绿色新动能。该模式基于清洁能源丰富、土地资源充沛等优势,通过实施农村光伏、生物质能等清洁能源项目,推动清洁能源优势转化为产业发展优势,带动百姓就地增收致富,助力国家“双碳”战略。在“光伏+”模式方面,利用建筑屋顶、院落空地、设施农业、集体闲置土地等,通包養过屋顶光伏、农光互补、牧光互补、渔光互补等方式,推进光伏发电发展,为乡村振兴注入绿色新动能。在生物质利用方面,利用畜禽粪便、秸秆等,发展生物天然气和沼气,助力改善人居环境,服务取暖用能。例如,海南省文昌市翁田镇王堂村的农光互补项目,通过“光伏+产业”跨界整合,在提供绿色电力的同时,将光伏板下撂荒地开发成蔬菜基地,既提升土地资源效率,又带动村民“家门口”就业。

探索“制度创新+”模式,加快包養乡村自然资本增值。该模式针对生态环境优良、生态产品富足的乡村地区,通过建立资源权益交易、生态补偿等制度,解决生态产品“难度量、难抵押、难交易、难变现”等问题。在权益交易包養方面,通过政府管控或设定限额等方式,健全碳权、能权、水权、排污权等交易机制,创造生态产品交易需求,引导和激励利益方交易。在生态补偿方面,按照“谁受益、谁补偿,谁保护、谁受偿”的原则,由政府或生态受益地区以资金补偿、产业扶持等方式向生态保护地区购买生态产品。例如,福建省龙岩市武平县在全国率先开展林权抵押贷款,探索林下空间流转利用,发展林下经济、生态旅游,把荒山育成“绿山”,让农民捧上“金山”,让发展有了“靠山”,实现“林地变股权、农户当股东、收益共分享”。

(作者:王波,系生态环境部环境规划院农村环境保护中心主任)


2024 年 4 月 20 日

我国正研制4米级、5米级可重复使用查包養心得火箭_中国网

记者从航天科技集团了解到,为适应商业航天市场需求,我国正抓紧研制4米级、5米级可重复使用包養網火箭,计划分别于2025年和2026年首飞。

据了解,目前,我国已完成了可重复使用火箭垂直起降悬停试验,突破了可复用火箭包養的关键技术,4米级、5米级可重复包養網比較使用火箭正在加速研制。

相比传统的一次性火箭,可重复使用火箭增加了四大类关键技术。一是火箭返回时要让它落得准;二是火箭着陆回收时要接得稳;三是为了满足重复使用要求,怎么让火箭用不坏;四是当火箭需要局部维修保养时,怎样才能修得快包養

专家介绍,可重复使用火箭是未来太空探包養索的重要发展方向之一,具有低成本、高效率、技术难度大和更加环保等特点。要实现这一目标,需要克服许多技术难题。目前,相关关键技术正在逐一攻克,整体研制进展顺利。

(总台央视记者 崔霞 陶嘉树)

2024 年 4 月 20 日

从太查包養網空到深海 中国新领域探索跑在前列_中国网

从浩瀚太空到万米地井,从冰封极地到大洋深处,新领域的探索,点亮人类文明“科技树”,也升级世界经济“发动机”。

深海探矿、星空织网、芯片显微、量子问道……一个又一个新发现,正转化为中国经济高质量发展的新动能。

探索新边界

人类认知的边界在哪里?中国正在向深空、深地、深海要答案。

问天——贵州省平塘县群山之间,坐落着凝望星空的“中国天眼”500米口径球面射电望远镜(FAST)。开放数据产出的高水平论文超150篇;发现的脉冲星总数达883颗,是国际上同一时期所有其他望远镜发现脉冲星总数的3倍以上……FAST将中国人的深邃目光投向宇宙深处。

问地——曾经“贫油少气”的中国,立志“给地球拍CT”,从深层、超深层地下要油、要气。在新疆,中国石化“深地工程”顺北油气田基地“深地一号”跃进3—3XC井完钻后成为亚洲最深井。不久前,这一纪录又被中国石油塔里木油田深地塔科1井刷新。

问海——从第一台自主设计的载人潜水器“蛟龙”号,到深海载人潜水器“深海勇士”号,再到在马里亚纳海沟10909米深度成功坐底的第一台万米级载人潜水器“奋斗者”号,中国深海探索的队伍日益壮大。

2023年,中国航天全年完成67次航天发射,长征系列运载火箭47次发射全部成功、累计连续发射成功175次;“奋斗者”号完成世界首次环大洋洲载人深潜科考任务,自主设计建造的首艘大洋钻探船“梦想”号首次试航……从太空到深海,展示了中国探索者的勇气和智慧。

好消息在继续,新纪录在产生。

近期,新疆塔克拉玛干沙漠腹地,中国首口万米深地科探井正式穿越万米大关;在珠江口盆地,中国发现国内首个深水深层亿吨级油田;海南文昌,探月工程四期“鹊桥二号”中继星通过长征八号遥三运载火箭发射升空,距离载人登月更近一步……从深空来、从深地来、从深海来,佳音频传。

开拓新领域

中国在量子技术实用化和产业化方面一直走在世界前列。抬头看,世界首颗量子科学实验卫星“墨子号”已稳定工作7年多。

7年来,“墨子号”不断为中国和世界带来新惊喜:2017年,首次实现两个量子纠缠光子被分发到相距超1200千米距离后,仍保持量子纠缠状态;2018年,首次实现距离达7600千米的洲际量子密钥分发,具备洲际量子保密通信能力;2022年,实现1200千米地表量子态传输新纪录……

步入“量子时代”的中国,除了为量子通信“织链成网”,还在打造量子计算的“最强大脑”。

量子计算有包養網两条主要技术路线,即光量子计算和超导量子计算。2021年,中国成功包養行情构建113个光子144模式的光量子计算原型机“九章二号”;同年,成功研制62个比特可编程超导量子计算原型机“祖冲之号”,此后进一步提升到66个超导比特。2023年,“祖冲之号”研发团队在66比特的芯片基础上做出提升,使用户可操纵的量子比特数达到176比特。中国科学院院士潘建伟说,中国是唯一一个包養網比較在两种物理系统都实现量子计算优越性的国家。

量子技术、人工智能、集成电路……近年,中国在各前沿领域的创新成果不断涌现,引发学界和业界注目。

斯坦福大学《人工智能指数报告》显示,中国在人工智能领域的被引用论文数量遥遥领先于欧美国家。彭博社称,中国企业正大幅增加对人工智能和量子计算的投资,“华为等中国科技企业已经在网络、超算和图像识别等领域引领了创新,中国企业正在把算法应用于从网络购物到打车的一系列业务”。

多家海外研究机构认为,在芯片领域的部分赛道,中国供应商进步显著。伯恩斯坦研究公司测算,2023年中国国内供应商约占中国晶圆制造设备市场的14%,高于2018年的3%,预计这一比例到包養平台推薦2026年将升至29%。

迈向新未来

迈向新未来,一步一个脚印。眼下,中国作为5G领域佼佼者,正成为6G领域的引领者。

6G研发有何基础?“中国5G用户普及率已超50%”“中国对外发布《6G网络架构展望》等技术方案”……中国宣布启动6G研发工作,蹄疾步稳。

6G意味着什么?更高的速度及容量、毫秒级延迟、可实现实时交互及应用……中国提出6G技术商用时间在2030年左右,目标明确。

“预计到2040年,全球6G市场规模超过3400亿美元,中国将成为6G技术的早期采用者,以及全球最大的6G市场之一”“中国拥有极为庞大的用户基础,中国科技企业有独立的6G战略,个别国家不太可能阻碍中国6G发展”……国际数据公司(IDC)等市场咨询机构这样判断。

登高望远,新未来还在极地、在太空。

日前,执行中国第40次南极考察任务的“雪龙2”号搭载着秦岭站考察队员穿越赤道返回北半球。为纪念中国极地考察40周年,返航途中还将开展相关纪念活动。

秦岭站所处的罗斯海区域保存着地球罕见的完整海洋生态系统,这里曾是中国南极科考布局的空白。今后,秦岭站将开展海洋生态、海冰、地球物理、陆地生态、鸟类等调查和观测监测,为评估南极生态环境和气候变化提供基础支撑。“随着中国的新科考站投入使用,人们越来越关注中国在南极洲的科研计划。”俄罗斯卫星通讯社说。

中国的航包養網天计划更是国际关注的焦点。

2024年,中国航天预计实施100次左右发射任务,有望创造新纪录;中国首个商业航天发射场将迎来首次发射任务,多个卫星星座将加速组网建设。

惊叹于中国在太空探索方面与日俱增的影响力,美国哥伦比亚广播公司在梳理了中国近年的航天项目后评价:中国计划在2030年前实现中国人首次登陆月球的梦想,这将为太空探索掀开新篇章。

从太空到深海,中国还将继续奔跑在探索新领域的“第一梯队”。(记者 汪文正)

2024 年 4 月 20 日

拓展“两山”转化路径 促进乡村生态振兴_中查包養網站比較国网

生态振兴是乡村“五大振兴”之一,是乡村振兴战略和生态文明建设战略的重要结合点。良好的生态环境是农村最大优势和宝贵财富。农村生态环境好了,土地上就会长出“金元宝”,生态就会变成“摇钱树”,田园风光、湖光山色、秀美乡村就可以成为“聚宝盆”,生态农业、森林康养、乡村旅游等就会红火起来。

乡村振兴要加强乡村生态保护修复,持续改善农村人居环境,把生态治理和发展特色产业有机结合起来,做大做强有机农产品生产、乡村旅游、休闲农业等产业,拓宽绿水青山转化金山银山的路径,实现生态“含金量”和发展“含绿量”同步提升。

探索“生态修复+”模式,提升乡村生态福祉。该模式针对自然生态系统被破坏或生态功能缺失的乡村地区,统筹生态修复和生态惠民,坚持山水林田湖草沙一体化保护和系统治理,因地制宜发展惠民产业,将生态修复与生态产业发展相结合,包養在恢复生态系统功能和增加生态供给的同时,将生态产品包養的价值附着于农产品、工业品、服务产品的价值中,实现百姓富、生态美的有机统一。例如,江苏省徐州市贾汪区将潘安湖采煤塌陷区建成国家湿地公园,为周边区域提供优质生态产品,并带动产业绿色转型与乡村振兴,实现生态、经济、社会等综合效益。

探索“环境整治+”模式,打造宜居宜业和美乡村。该模式针对人居环境“脏乱差”的乡村地区,学习运用“千万工程”经验,以实施农村人居环境整治工程为抓手,以建设和美乡村为导向,统筹推进环境整治与设施建设、产业发展、乡风文明等,解决与农民生产生活息息相关的厕所、污水、垃圾等关键小事,提升乡村美丽“颜值”,培育特色生态产业,让“好风景”成为乡村振兴的“好钱景”。例如,浙江省湖州市安吉县通过20多年持续实施“千万工程”,把全县所有村全部打造成美丽乡村。同时,积极发展观光旅游,推动茶产业包養網等相关产业发展,探索走出一条绿色低碳高质量发展的乡村振兴之路。

探索“生态农业+”模式,推动乡村产业融合发展。该模式针对农业面源污染突出的乡村地区,按照生态工程学原理,推广种养结合、生态健康养殖等方式,推进农业资源利用集约化、投入品减量化、废弃物资源化、产业模式生态化;同时,依托优质农产品、优美自然环境、特色文旅资源等,实施农文旅深度融合工程,发展特色生态产业,打造乡土特色品牌,发包養網展生态旅游新业态,增加农产品附加值和农民收入,推动一、二、三产业融合发展。例如,江苏省苏州市吴中区金庭镇依托区位优势、特色产品和历史文化,发展生态农业,打造洞庭山碧螺春等品牌,培育农事体验和文化旅游,实现农文旅深度融合发展。

包養平台推薦

探索“清洁能源+”模式,增添乡村绿色新动能。该模式基于清洁能源丰富、土地资源充沛等优势,通过实施农村光伏、生物质能等清洁能源项目,推动清洁能源优势转化为产业发展优势,带动百姓就地增收致富,助力国家“双碳”战略。在“光伏+”模式方面,利用建筑屋顶、院落空地、设施农业、集体闲置土地等,通过屋顶光伏、农光互补、牧光互补、渔光互补等方式,推进光伏发电发展,为乡村振兴注入绿色新动能。在生物质利用方面,利用畜禽粪便、秸秆等,发展生物天然气和沼气,助力改善人居环境,服务取暖用能。例如,海南省文昌市翁田镇王堂村的农光互补项目,通过“光伏+产业”跨界整合,在提供绿色电力的同时,将光伏板下撂荒地开发成蔬菜基地,既提升土地资源效率,又带动村民“家门口”就业。

探索“制度创新+”模式,加快乡村自然资本增值。该模式针对生态环境优良、生态产品富足的乡村地区,通过建立资源权益交易、生态补偿等制度,解决生态产品“难度量、难抵押、难交易、难变现”等问题。在权益交易方面,通过政府管控或设定限额等方式,健全碳权、能权、水权、排污权等交易机制,创造生态产品交易需求,引导和激励利益方交易。在生态补偿方面,按照“谁受益、谁补偿,谁保护、谁受偿”的原则,由政府或生态受益地区以资金补偿、产业扶持等方式向生态保护地区购买生态产品。例如,福建省龙岩市武平县在全国率先开展林权抵押贷款,探索林下空间流转利用,发展林下经济、生态旅游,把荒山育成“绿山”,让农民捧上“金山”,让发展有了“靠山”,实现“林地变股权、农户当股东、收益共分享”。

(作者:王波,系生态环境部环境规划院农村环境保护中心主任)


2024 年 4 月 19 日

21世纪以来美国科查包養網技政策演变特点及启示_中国网

中国网/中国发展门户网讯 当今世界正经历百年未有之大变局,而科学技术之变(即新一轮科技革命与产业变革)是世界大变局的“加速器”和主要变量。21世纪以来,全球科技创新进入加速发展时代,科技发达国家充分发挥其科技基础优势和科技政策导向作用,全面强化其国家科技发展战略及前沿领域布局,力争在新科技革命及竞争中占据战略主动。在科技事业发展国家建制化的当今时代,科技政策制定对任一国家都意义重大,能够直接影响未来科技发展路径和国际科技竞争力。美国自二战后,形成了以《科学:无尽的前沿》报告思想为轴心的科技政策体系,该报告明确指出政府应当制定全面的科技政策资助科学研究。冷战结束时,美国科技政策体系已经成熟化和系统化,这为美国的科技发展奠定了良好的政策和制度基础,使21世纪初美国的综合科技水平在全球处于一国独大独强的显赫地位。

21世纪以来,随着经济全球化、科技多极化深入发展,特别是新兴经济体国家科技迅速崛起,美国的全球科技领先地位受到明显挑战。近几年来,中国快速发展、崛起及其世界性影响力的提升被美国视为“步步紧逼的威胁”(pacing threat)。美国为保持其世界领先地位,不惜对我国发动“贸易战”“科技战”等,以科技竞争为核心的中美竞争更加激烈,被称为“新冷战”。美国不断调整和强化科技政策作用,科技政策研究中更是将应对中国竞争视为是保持其科技领先地位的首要因素。例如:2019年9月,美国外交关系协会发布《创新与国家安全:确保我们的优势》报告,认为“中国作为世界第二大经济体,既是美国的经济伙伴,又是战略竞争对手”。2020年11月,美国民主、共和两党合作的中美科技关系工作小组发布《迎接中国挑战:美国科技竞争新战略》报告,为应对中国挑战、提升美国竞争力和保护国家安全提供了16条政策建议。2021年1月,新美国安全中心发布《掌舵:迎接中国挑战的国家技术战略》报告,认为“崛起的中国对美国及其盟友构成了直接挑战,美国有必要制定国家技术战略,以保持其在创新和技术领域的领导地位”。

在此背景下,研究美国近20年来科技政策的演变特点,有助于深入理解美国科技政策发展的内在逻辑和美国科技战略规划的发展趋势及走向,观察科技政策效能与科技创新竞争力之间的内在关联关系。这对于我国优化科技政策制定、前瞻科技战略布局和加快推进科技强国建设具有重要现实借鉴意义。因此,本文聚焦于21世纪以来美国科技政策,按照美国总统任期总结各阶段科技政策重点,梳理和归纳美国科技政策发展的基本脉络,以便对美国科技政策发展全貌有一个系统的认识;将科技政策落脚至美国联邦政府研发投入方面,系统分析研究与试验发展(R&D)经费投入的历史演变,从侧面线性反映美国科技政策的作用效果;通过以上分析,将相对全面地反映美国近20年来整体科技政策发展走向及战略布局重点,为我国科技战略发展和科技政策布局提出若干启示思考。

美国21世纪以来科技政策发展历程

科技政策往往能反映科技治理的国家意志、科技发展的战略方针及资源配置的顶层设计,对于一个国家的科技发展有重要影响。按照21世纪以来美国总统的任期划分阶段,以小布什政府时期为起点,广泛搜集各时期的战略方针、科技规划、研究报告及批准的法案等政策文件,重点分析科研投入强度、前沿领域布局、人才培养和对华态度等科技政策问题,但不涉及科技政策的具体操作和实施细节。

小布什政府的科技政策(2001—2008年)

克林顿政府时期为小布什政府的科技、经济、社会发展打下了良好的基础。小布什政府的科技政策相对平稳,主要呈现出3个特点:提升美国全球竞争力成为重点关切。2004年,美国竞争力委员会发布《创新美国:在挑战和变革的世界中达至繁荣》报告,制定了提高美国创新能力的行动议程。2005年,美国国家科学院(NAS)发布《站在风暴之上:为了更辉煌的经济未来而激活并调动美国》(以下简称《站在风暴之上》)报告,指出迫切需要全面协调的联邦努力以增强美国竞争力。2006年,小布什签署的《美国竞争力倡议:在创新中领导世界》,这直接促进了2007年《美国竞争力法案》的生效。 推行教育改革,扩大教育投入。小布什政府上台初就提出“不让一个孩子掉队”的教育改革方案,并于2002年形成法律,旨在提高美国中小学教育质量。2007年8月,《美国竞争力法案》要求把国家科学基金重点用于奖学金支持计划、STEM(科学、技术、工程和数学)师资培训和大学层面的STEM研究计划。2007年10月,美国国家科学委员会(NSB)发布《国家行动计划:应对美国科学、技术、工程和数学教育系统的紧急需要》报告,指出美国亟需建设一个强大的、协调一致的STEM教育体系。重视能源技术和纳米技术发展。小布什政府在保持信息技术先进地位的同时,将能源技术、纳米技术作为优先发展领域。例如,在纳米技术领域,2000年2月,白宫发布《国家纳米技术计划:引领下一次工业革命》,标志着美国进入全面推进纳米科技发展的新阶包養段。2003年,小布什签署《21世纪纳米技术研究开发法案》,随后美国不断定期发布《国家纳米技术战略规划》(迄今已发布6份),使其纳米技术长期保持世界领先地位。

奥巴马政府的科技政策(2009—2016年)

奥巴马政府时期充分发挥联邦政府科技政策导向作用,先后3次发布国家层面的创新战略,从而构成了奥巴马政府时期的科技政策框架。主要包括:重视对基础研究、STEM教育等基本创新要素投入。2009年2月《美国复苏与再投资法案》(以下简称《ARRA法案》),致力于通过积极的财政政策刺激美国经济复苏,这使当年美国研发经费增幅达历史新高。基于该法案,2009年美国联邦政府发布《美国国家创新战略》,要求加大政府在基础科学、教育和新兴产业技术领域的投资,以增加就业机会、恢复美国经济。同时,奥巴马政府时期将STEM教育提升至国家战略层面,注重STEM教育者素质的提升,同时实行宽松的移民政策,大力吸收国际高级技术人才,2013年发布《联邦政府STEM教育五年战略计划》,2015年通过《STEM教育法案》。注重对先进制造、清洁能源等科技前沿创新布局。2011年《美国国家创新战略》关注创新为民生服务,重点转向激发创新活力以促进经济持续增长和繁荣。美国在科技政策中强化前沿技术攻关,先后发布了“先进制造业战略计划”“国家机器人技术计划”“材料基因组计划”“脑计划——推进创新神经技术脑研究计划”“精准医疗计划”“清洁能源计划”等。其中,先进制造是美国重点布局领域,围绕其发展先后出台了一系列相关法律和战略报告等。强调政府在科技创新中的重要作用。2012年1月,美国商务部发布《美国竞争力和创新能力》报告,明确指出科技创新是美国21世纪经济增长和维持竞争力领先地位的关键。2015年《美国国家创新战略》强调政府是创新主要服务者,提出了包括建设创新基础设施、推动私营部门创新和催生国家重点领域优先突破等具体措施以提升政府服务创新的能力。

特朗普政府的科技政策(2017—2020年)

通过特朗普政府各财年的研发预算优先事项和美国科技政策办公室发布的各项战略、文件等,结合2020年联邦政府总结发布的《提升美国在全球科技领域的领导地位——特朗普政府亮点:2017—2020年》,可以洞察特朗普政府时期的科技政策布局。主要有:高度关注国家安全,实施“美国优先”政策。特朗普奉行“单边主义”保护政策,退出《跨太平洋伙伴关系协定》(TPP)和《巴黎协定》等一系列国际协议,同时收紧竞争对手国家留学生签证;在新兴科技领域强调美国利益优先,以实现“美国再次伟大”的战略目标。2017年12月,美国联邦政府发布《美国国家安全战略》,为恢复美国在世界的领先地位明确了战略方向。科研投入持续增长,激励企业创新。特朗普政府在各财年研发预算提案中都主张削减基础研究等非国防研发支出,大幅增加国防研发预算。但由于美国科研经费控制权在国会,而不在政府,最终联邦财政科研总投入仍呈增长态势。为激励企业创新和增加就业机会,2017年12月,美国联邦政府推出《减税与就业法案》。重包養视新兴技术研发,促进未来产业发展。2020年10月,美国白宫发布《关键与新兴技术国家战略》,明确列出了先进制造、人工智能和量子信息科学等20项“关键与新兴技术”清单,围绕这些关键与新兴技术领域,联邦政府相继发布战略规划、研究报告和法案等。

拜登政府的科技政策(2021年至今)

拜登政府的科技政策发展走向可从白宫网站的行政命令、声明文件及2022、2023财年研发预算中进行研判。主要有: 积极应对新冠疫情和气候变化问题。2022年4月,白宫发布《关于应对COVID-19长期影响备忘录》,以促进公民健康和国民经济尽快从疫情中恢复。此外,拜登政府表示要高度重视气候变化和可持续发展,开展绿色经济,重返《巴黎协定》。加大科技研发投入,掌握科技创新主动权。拜登政府2021年呼吁投资1800亿美元用于研发和未来的技术,明确指出在人工智能、半导体芯片、5G通信技术、生物技术、量子计算等与国家战略生存与发展密切相关领域,要牢牢把握科技创新主动权。2022年,美国国家科学技术委员会(NSTC)发布《关键和新兴技术清单》目录更新版,被视为是支持美国国家技术安全、保护敏感技术和争夺国际人才的重要参考,并推动《2022科学与芯片法》正式立法实施。加大力度吸纳全球优秀人才,实行“友岸合作”的多边主义政策,强化科技军事联盟。拜登政府提出了新的吸引人才政策,例如,新增22个STEM教育专业,延长STEM相关专业J-1签证(交流访问学者签证)期限,以及简化STEM专业人才的绿卡申请流程等。拜登政府强调联合盟友国共同应对外来威胁。2021年3月白宫发布《临时国家安全战略指南》,2022年发布新版《国家安全战略》,明确将中国视为美国的头号竞争对手,要求重振美国在世界各地的联盟和伙伴关系,共同应对气候变化危机及其他共同威胁。

美国联邦政府研发投入的历史演变分析

研发投入政策是国家科技政策重要组成部分之一,也是科技政策作用效果最为直接的反映和体现。美国联邦政府R&D投入作为国家科技投入核心战略性资源和代表,分析其长时间序列下的历史演变有助于深入理解和感知美国21世纪以来科技政策演变规律,观察科技政策对科技创新能力的影响效果。

美国总体研发投入强度

二战以来,美国R&D经费投入持续增长(图1)。按照科技政策的发展历程来看,美国R&D经费投入变化趋势与其国家科技政策演变高度一致:1953—1964年,美国认识到科学技术在二战中的重要作用,并受苏联成功发射卫星的影响,大力支持科学研究。该时期,美国R&D投入强度急速增长。20世纪60年代末—70年代,由于科学发展带来的负面影响,社会公众对科学产生了质疑,进而导致R&D投入强度下降。20世纪80年代,美国积极鼓励和支持产业界研发以应对日本经济挑战,美国R&D经费投入增加并扩大了其使用范围。20世纪90年代以来,美国赢得了与苏联的冷战及与日本的经济竞争,美国R&D投入强度开始平稳发展,逐渐保持在其GDP 2.5%—3.0%的水平。2017年之后,面对不断加剧的国际竞争环境和中国等新兴经济体的迅速崛起,美国认为其科技地位再次受到挑战,又增加了R&D经费投入,在2019年首次突破了3%,达到了3.12%。

具体来看,美国R&D经费主要来源于联邦政府和企业。20世纪80年代之前,美国R&D投入强度与联邦R&D投入强度变化曲线高度一致,之后与企业R&D投入强度变化一致。这说明:美国R&D投入开始以联邦政府投入为主导,随着企业R&D投入的快速增加,其在国家研发体系中作用越来越大,逐渐成为R&D投入主要影响因素。需要特别注意的是,2000年之前,美国联邦政府R&D投入强度整体上一直在下降(已经下降到0.6%左右),21世纪头10年趋于平稳(2009年美国《ARRA法案》为研发提供的一次性增量资金,使美国联邦政府R&D投入强度有一个小幅的增长),2010年之后又出现了较大的缩水,这也是21世纪以来美国科技政策一直在强调增加联邦政府R&D投入的原因之一。

美国联邦政府研发活动布局

美国联邦政府研发活动主要包括基础研究、应用研究和试验发展3种,其分布如图2所示。21世纪之前,美国联邦政府基本50%以上的研发资金都用于实验发展活包養动,但随着20世纪80年代美国企业科技创新能力和研发投资不断增加,承担了大部分的试验发展活动,美国联邦政府研发重点逐渐从试验发展向基础研究倾斜,基础研究投入份额显著增长。但需注意的是,21世纪以来基础研究投入呈现平稳甚至下降的趋势,科学界开始呼吁要加大联邦政府R&D投入力度,尤其是基础研究。例如,2014年9月,美国艺术与科学院(AAAS)在《恢复基础:研究在维护美国梦中的重要作用》报告中指出:如果国家不迅速采取行动来支持科学事业,尤其是基础研究,美国长期以来作为创新引擎、产生新发现和刺激就业增长的优势就会被削减。2020年9月,AAAS发布更新版《自满的危险:美国处于科学与工程的临界点》报告,重点指出受全球新冠疫情、人才流动限制和研究经费削减等政策影响,美国在科学和工程方面的领先优势正在迅速缩小,中国在许多重要指标上都超过了美国;因此,美国急需增加研发预算,高度重视基础研究,加强美国STEM教育提升劳动力。虽然不能预见某项基础研究会在何时何地引领新的经济增长,但从历史的角度看,美国21世纪初在科技领域取得的世界领先地位,与其历届联邦政府对基础研究持续的投入增长不无关系。

美国联邦政府核心部门研发投入布局

美国联邦政府科技研发核心部门主要有国防部(DOD)、能源部(DOE)、国家航空航天局(NASA)、国家科学基金会(NSF)和国立卫生研究院(NIH),这些机构均是具有明显领域特征的功能型政府机构,观察其R&D投入演变趋势(图3)也能从侧面反映相应领域的政策变迁。美国高度重视国防领域研发活动,DOD长期以来R&D投入份额达40%以上;但伴随国家战略转向科技和经济发展,美国开始缩减军事经费,R&D投入呈现下降趋势。与此同时,为应对传染病、癌症等人类生命健康威胁,NIH启动“脑科学计划”“精准医疗计划”等,R&D投入份额呈现上升趋势,21世纪以来始终维持在20%以上。近年来,国际上气候变化、生态环境等问题日益突出,DOE研发资金在2015年之后稳步提升。NASA的R&D投入随着与苏联太空竞争及“星球大战计划”的结束而下降,21世纪以来稳定在6%—10%。NSF作为美国国家基础研究资助的核心部门,R&D投入始终维持在2.5%—5.0%。可见,美国联邦政府对核心部门的R&D投入布局与国家领域战略发展倾向相一致。

美国国防和非国防研发布局

美国联邦政府国防和非国防R&D投入演变如图4所示,与图3相关政府部门的R&D投入趋势保持一致。20世纪50年代末为应对苏联太空竞争及21世纪初为应对恐怖主义,美国均优先发展军事,重视国防领域研发活动;20世纪60年代末—70年代,由于能源危机,非国防研发有了一定的增长,符合公众福祉的健康领域迎来了发展契机;20世纪80年代,里根政府提出“战略防御”计划,重新增加了国防研发支出;20世纪90年代,随着冷战的结束,美国开始提倡军转民或军民两用技术的发展,国防R&D投入开始下降并逐渐趋于平稳;2008年经济危机之后,美国战略重点转向促进经济增长,国防R&D投入下滑,2017年后美国挑起“科技战”,美国国防R&D投入份额更是低于50%。非国防指的是除DOD和国家核安全局(NNSA)之外所有研究资助者的资助类别,按照功能主要包括健康、空间、能源、一般科学、自然资源和其他。总体来看,美国在非国防领域采取了点面结合的科研资助模式:一方面,为保护生态环境、增进民生福祉、鼓励科学家非功利性开展科学研究,美国联邦政府在投入领域方面涵盖健康、一般科学和自然资源等相关所有科学领域。另一方面,围绕国家科技战略导向和科技竞争核心领域,美国联邦政府大力支持相关领域科技研发。例如,20世纪60年代,美国处于与苏联的太空竞争中,空间R&D经费投入直线上升;20世纪70年代,为缓解全球性能源危机,能源R&D经费投入迎来一段上升期。

美国联邦政府研发投入的学科布局

美国联邦政府R&D投入的学科分类统计口径主要包括生命科学、心理学、物理学、环境科学、数学和计算机科学、工程科学、社会科学及其他学科8类(图5)。其学科领域R&D投入的变化与国际竞争环境、科技战略布局等密切相关。从投入占比来看,生命科学领域是美国联邦政府R&D投资组合的重要组成部分,占联邦政府研发总额的一半以上,其中NIH承担了大部分的生命科学研究,该领域主要包括生物学、生物医学和健康科学。第二大学科领域是工程科学,包括航空、航天、化工、电气、机械和材料等学科。20世纪90年代之前由于美苏争霸,使得该领域R&D投入处于较高水平,但随着冷战的结束而下降。近年来,中美芯片竞争愈演愈烈,材料科学逐渐成为工程科学的重点关注,使得该领域R&D投入又呈上升趋势。第三大学科领域物理科学的R&D投入随着冷战的结束显著下降。R&D投入明显增长的学科领域有生命科学、数学和计算机科学。值得一提的是,美国数学和计算机科学R&D投入自20世纪90年代以来显著增长,这主要得益于1993年克林顿政府提出“信息高速公路”战略——计算机科学R&D投入迅猛增加。2017年计算机科学R&D投入几乎是数学的3倍,使得美国信息经济走在世界前列。

通过以上对美国联邦政府R&D投入的多维分析可以发现,美国联邦政府R&D投入比例往往与其国家科技战略发展重点密切相关,而美国联邦政府在核心部门、非国防领域和不同学科的R&D投入份额的显著波动均出现在21世纪之前,21世纪以来则相对平稳。这或可从侧面说明,近20多年来美国科技政策只是惯性发展和惯性起作用,政府没有出台突破性或变革性的科技战略政策。

美国科技政策演变逻辑及特点

从科技政策和R&D投入的演变来看,美国科技政策发展有一个潜在的方向指引(内在逻辑)——保持全球领导地位、提升国家科技实力,战胜竞争对手。美国认为其历史上曾数次面临竞争危机:1957年,苏联发射第一颗人造卫星斯普特尼克,美国科技政策和研发投入布局迅速做出重大变革,动员一切力量投身于与苏联的太空竞争。20世纪80年代,面临与日本的经济竞争,美国积极拓展联邦资金的使用范围,制定一系列措施鼓励联邦机构、大学和私人企业之间合作以促进技术转移转化。20世纪90年代,冷战以美国的胜利而告终,同时美国凭借“信息高速公路”为首的信息产业的科技引领实现了美国历史上和平时期最长的一次经济高速包養網增长。21世纪头10年,美国科技政策惯性起作用。2008年以来,尤其是2018年之后,面对国际竞争不断加剧和中国等新兴经济体的迅速崛起,美国认为其科技地位再次受到挑战,又一次迎来了改变其科技政策走向的历史性时刻,并将之称为“中国的斯普尼克时刻”。近年来,美国为维持全球领导地位和提升国家竞争力,科技政策主要从以下4个方面做出了重大调整。

改革国家创新体系和加强创新制度建设重塑

进入21世纪,自2005年美国国家科学院发布《站在风暴之上》报告之后,美国科学界和政策界普遍认识到国家科技创新能力下降和科学技术领导地位受到威胁,美国联邦政府、科技智库等各类科技政策机构就美国科技发展和国家创新体系进行反思。例如,美国信息技术与创新基金会(ITIF)2020年发布《认识美国国家创新体系》报告,指出面对中国发展及美国政府R&D投入的下降,国家创新体系正处于危机之中,需要重建国家创新体系。美国竞争力委员会2020年发布《在下一个经济体中竞争:创新时代》报告,指出美国作为世界创新领导者的历史地位已受到威胁,并提出50条具体建议为国家创新提供了路线图。从奥巴马政府3次发布《美国国家创新战略》起,美国不断强调科技创新的重要性,国家层面相应出台了很多领域创新战略计划、竞争力法案等。近年来,美国联邦政府开始强调国家创新主体间的体系不同合作,以一种“全政府模式”动员全社会力量促进科技创新,主要包括多政府部门合作、军民融合、公私合作等多个方面。

加大研发经费和科技人才投入以巩固创新根基

美国科技政策的变革还体现在政府在财力和人力上的投入加大。在财政资源方面,加大联邦政府R&D投入力度,尤其是基础研究投入强度,成为美国政策文件中关注重点。例如,拜登政府高度重视科技发展,一上台就不断强调大力增加联邦政府R&D投入,在《2022芯片与科学法》中,政府对科技的投入就占有相当大的比重。在人才培养方面,美国对STEM教育的重视程度已经上升到了国家战略高度。21世纪以来,美国颁布了一系列STEM教育的科技政策(图6),形成了较为完善的STEM教育体系。特朗普政府时期严格限制了STEM专业留学生的签证和移民条件。美国战略与国际问题研究中心(CSIS)指出,如果美国STEM移民政策不进行重大改革,美国将在未来的人才竞争中被中国超越。2022年,拜登政府颁布新政放宽了STEM专业人才在美国就业和移民的要求,以重新恢复美国对优秀人才的吸引力。

实施国家产业政策以控制高科技领域产业链

美国一直主张自由市场经济,政府不干预产业的形成和发展。但实际上,自2008年金融危机后,美国联邦政府开始强调政府在科技发展中的重要作用,通过隐形的产业政策介入以实现高质量就业和经济复苏目标,形成了以“先进制造业”为核心的现代产业政策框架。特朗普政府时期提出未来产业的概念,2020年6月美国总统科学技术顾问委员会(PCAST)发布《关于加强美国未来产业领导地位的建议》,2021年1月又发布《未来产业研究所:美国科学与技术领导力的新模式》报告,以促进先进制造、人工智能和量子信息等产业的发展。ITIF于2022年1月发布《计算机芯片与薯片:美国战略产业政策的案例》报告,认为美国只有制定战略性产业政策,确定国家安全和经济发展所需的关键产业和技术,才能持续掌控美国的创新和生产能力。近几年,美国正在打破传统的市场经济理念,加强政府在促进科技产业中的作用,采取“产业政策”振兴美国关键科技产业,在关键技术和核心领域上体现国家干预。以先进半导体产业为例,美国《2022芯片与科学法案》于2022年8月9日签署成法,旨在激励美国先进半导体生产和控制先进半导体产业链,支持美国的尖端应用科学研究。

遏制中国科技发展以保持其全球科技领导地位

随着中国在5G通信技术、人工智能、量子信息等科技领域的崛起,以及中国与美国在专利数量、高被引出版物、全球创新指数和R&D投入总量等方面差距迅速缩小,美国各界充满了“即将被中国全面超越”的焦虑,并将中国视为重要竞争对手。2022年美国《国家安全战略》中指出“未来10年是中美竞争的决定性10年”,中美围绕高技术领域呈现持久博弈的明显趋势。近年来,美国加大了对中国科技发展的遏制力度,实施严格且精准的出口管制。以美国商务部工业与安全局《实体清单》(Entity List)为例进行说明:特朗普时期试图通过科技“脱钩”遏制中国在半导体、人工智能等关键领域的科技发展,2018年后《实体清单》中的中国实体数量开始显著增长。拜登政府上台后,延续了特朗普政府对中国科技遏制倾向,不断升级对中国高技术出口管制的限度。2022年10月,美国商务部工业与安全局发布《对向中国出口的先进计算和半导体制造物项实施新的出口管制》,旨在进一步限制中国购买和制造高端芯片的能力。可见,美国对中国打压态度非常明确,遏制中国科技发展愈发成为其科技政策变革的重要因素。

主要结论和政策启示

主要结论

21世纪以来新一轮科技革命和产业变革加速演进,新兴国家科技快速发展,科技创新版图显示出多极化发展态势,美国的全球科技领导地位和科技竞争实力就显得相对走弱。刨除科技创新全球化因素之外,这与其近几届政府科技政策缺乏有效创新改革,以及政府R&D投入不断下降等有着密切联系。近20年来,美国科技政策的发展情况可分为2个阶段。

21世纪初,美国联邦政府没有出台突破性或变革性的科技战略,只是“惯性”起作用。冷战结束后,美国丧失了同量级的竞争对手,20世纪末成为世界头号科技强国,其科技政策变革不大而只是“惯性”起作用。具体表现在:科技治理体系基本维持现状。20世纪90年代苏联解体后,美国逐渐失去了危机感,国家创新政策体系变化不大,科技政策惯性地起作用推动科技发展。进入21世纪以来,政界和学术界意识到竞争危机,小布什和奥巴马政府都不同程度地制定战略计划和法案应对挑战,但都不是根本上的改进与变革。美国联邦政府R&D投入不断下降。自2000年以来,美国联邦政府的R&D投入强度下降明显。联邦政府R&D投入比例与国家科技战略发展重点相辅相成,21世纪以来,各部门、各领域及各学科的R&D投入份额并没有显著的波动,这进一步印证21世纪以来科技政策战略平稳惯性发展。科技计划战略性、引领性减弱。21世纪以来,美国虽然制定了“纳米计划”“先进制造计划”“人工智能和量子倡议”等一系列战略计划,但其影响力相对平常,尚未形成像“曼哈顿工程”“阿波罗登月计划”“信息高速公路”等具有长远战略性和世界科技引领性的重大科技工程或科技计划。

2018年来,美国的危机感和竞争意识明显增强,科技政策的调整加快、竞争性明显增强。随着全球科技竞争的日益激烈及中国等新兴经济体的崛起,重新激起了美国的科技竞争意识。近年来,美国科技政策又逐步强化。具体表现在:科技创新政策一体化发展。美国政界意识到高效的“创新体制”是保持全球领导地位、提升科技竞争力、抵御经济和疫情等全球性危机的关键,因而不断推动国家创新体系改革。例如,奥巴马时期就高度强调科技创新的重要作用,接连3次发布《美国国家创新战略》。科技产业政策日渐“显性化”。美国历来崇尚的“市场机制”中逐渐显现出政府的作用,政府加强了对产业科技的支持力度,在关键科技领域的前瞻布局,明确了前沿技术领域发展优先级,发布了一系列战略规划、科技报告等。例如,历时3年,《2022芯片与科学法》正式立法。③ 明确将中国视为重要竞争对手。自特朗普政府发动“科技战”以来,美国已经将中国视为其头号竞争对手,与中国开展战略竞争是美国科技政策发展的主题和大势。同时,美国积极拓展多边科技外交关系,注重与相同意识形态和利益国家结交同盟,全方位遏制和打压中国科技发展。

政策启示

从美国的科技政策和科研投入的历史演变来看,科技强国不是一蹴而就的,是经过国家长期科技战略导向布局、稳定增长的研发投入力度和重大科技创新突破积累的结果。这样的历史经验对我国科技政策制定、科技战略布局和科技强国建设具有重要的启示意义。

科技发展是长期战略性的事业,需要稳定高效的科技治理体系和长远战略性科技政策指引。二战以后,美国70多年持续不懈大力发展科技,才奠定世界科技第一强国的战略地位。而21世纪以来,美国科技政策平稳惯性发展、政府R&D投入的不断下降及新兴国家的崛起,美国全球科技领导地位受到挑战。为此,我国在建设科技强国的进程中,应形成持续稳定支持科技发展的科研投入机制、以长远的眼光系统部署国家战略科技力量,以及不断地深化国家科技治理体系改革。持续稳定加大R&D投入,长期重视前沿基础研究和STEM教育,为科技发展提供源动力;从国家战略高度制定引领性科技产业政策,鼓励企业开展关键核心技术攻关,提升企业科技创新能力;不断加强科技发展的顶层设计和宏观统筹协调能力,提高国家创新体系的工作效率和风险抵抗力。

科技包養網发展是高度竞争性的事业,显著的科技政策竞争实力有助于支持形成科技的竞争优势。美国的科技发展水平在与苏联、日本的竞争中不断提高,使21世纪初美国的综合科技水平在全球处于一国独大独强的超强地位。随着新一轮科技革命和产业变革加速演进,国际科技竞争空前激烈,科技发展国家化和企业化特征日益明显。为此,我国在注重科技实力和国际地位快速提升的同时,应时刻保持竞争意识和忧患意识,前瞻谋划科技政策战略布局。协调国际科技竞争与合作关系,明确科学技术的国家利益导向,将高质量科技自立自强与高质量开放创新相结合;聚焦战略性高科技领域,发展重要战略性和前瞻引领性的国家级科技计划或科技工程,提升国家核心科技竞争力;关注高质量科技人才竞争,优化教育资源配置,加大对战略性新兴技术产业和重点科学领域紧缺世界顶尖人才的培养和吸引力度。

(作者:曹玲静,郑州大学信息管理学院;张志强,中国科学院成都文献情报中心 中国科学院大学经济与管理学院。《中国科学院院刊》供稿)

2024 年 4 月 19 日

从查包養網太空到深海 中国新领域探索跑在前列_中国网

从浩瀚太空到万米地井,从冰封极地到大洋深处,新领域的探索,点亮人类文明“科技树”,也升级世界经济“发动机”。

深海探矿、星空织网、芯片显微、量子问道……一个又一个新发现,正转化为中国经济高质量发展的新动能。

探索新边界

人类认知的边界在哪里?中国正在向深空、深地、深海要答案。

问天—包養網—贵州省平塘县群山之间,坐落着凝望星空的“中国天眼”500米口径球面射电望远镜(FAST)。开放数据产出的高水平论文超150篇;发现的脉冲星总数达883颗,是国际上同一时期所有其他望远镜发现脉冲星总数的3倍以上……FAST将中国人的深邃目光投向宇宙深处。

问地——曾经“贫油少气”的中国,立志“给地球拍CT”,从深层、超深层地下要油、要气。在新疆,中国石化“深地工程”顺北油气田基地“深地一号”跃进3—3XC井完钻后成为亚洲最深井。不久前,这一纪录又被中国石油塔里木油田深地塔科1井刷新。

问海——从第一台自主设计的载人潜水器“蛟龙”号,到深海载人潜水器“深海勇士”号,再到在马里亚纳海沟10909米深度成功坐底的第一台万米级载人潜水器“奋斗者”号,中国深海探索的队伍日益壮大。

2023年,中国航天全年完成67次航天发射,长征系列运载火箭47次发射全部成功、累计连续发射成功175次;“奋斗者”号完成世界首次环大洋洲载人深潜科考任务,自主设计建造的首艘大洋钻探船“梦想”号首次试航……从太空到深海,展示了中国探索者的勇气和智慧。

好消息在继续,新纪录在产生。

近期,新疆塔克拉玛干沙漠腹地,中国首口万米深地科探井正式穿越万米大关;在珠江口盆地,中国发现国内首个深水深层亿吨级油田;海南文昌,探月工程四期“鹊桥二号”中继星通过长征八号遥三运载火箭发射升空,距离载人登月更近一步……从深空来、从深地来、从深海来,佳音频传。

开拓新领域

中国在量子技术实用化和产业化方面一直走在世界前列。抬头看,世界首颗量子科学实验卫星“墨子号”已稳定工作7年多。

7年来,“墨子号”不断为中国和世界带来新惊喜:2017年,首次实现两个量子纠缠光子被分发到相距超1200千米距离后,仍保持量子纠缠状态;2018年,首次实现距离达7600千米的洲际量子密钥分发,具备洲际量子保密通信能力;2022年,实现1200千米地表量子态传输新纪录……

步入“量子时代”的中国,除了为量子通信“织链成网”,还在打造量子计算的“最强大脑”。

量子计算有两条主要技术路线,即光量子计算和超导量子计算。2021年,中国成功构建113个光子144模式的光量子计算原型机“九章二号”;同年,成功研制62个比特可编程超包養导量子计算原型机“祖冲之号”,此后进一步提升到66个超导比特。2023年,“包養祖冲之号”研发团队在66比特的芯片基础上做出提升,使用户可操纵的量子比特数达到176比特。中国科学院院士潘建伟说,中国是唯一一个在两种物理系统都实现量子计算优越性的国家。

量子技术、人工智能、集成电路……近年,中国在各前沿领域的创新成果不断涌现,引发学界和业界注目。

斯坦福大学《人工智能指数报告》显示,中国在人工智能领域的被引用论文数量遥遥领先于欧美国家。彭博社称,中国企业正大幅包養網增加对人工智能和量子计算的投资,“华为等中国科技企业已经在网络、超算和图像识别等领域引领了创新,中国企业正在把算法应用于从网络购物到打车的一系列业务”。

多家海外研究机构认为,在芯片领域的部分赛道,中国供应商进步显著。伯恩斯坦研究公司测算,2023年中国国内供应商约占中国晶圆制造设备市场的14%,高于2018年的3%,预计这一比例到2026年将升至29%。

迈向新未来

迈向新未来,一步一个脚印。眼下,中国作为5G领域包養佼佼者,正成为6G领域的引领者。

6G研发有何基础?“中国5G用户普及率已超50%”“中国对外发布《6G网络架构展望》等技术方案”……中国宣布启动6G研发工作,蹄疾步稳。

6G意味着什么?更高的速度及容量、毫秒级延迟、可实现实时交互及应用……中国提出6G技术商用时间在2030年左右,目标明确。

“预计到2040年,全球6G市场规模超过3400亿美元,中国将成为6G技术的早期采用者,以及全球最大的6G市场之一”“中国拥有极为庞大的用户基础,中国科技企业有独立的6G战略,个别国家不太可能阻碍中国6G发展”……国际数据公司(IDC)等市场咨询机构这样判断。

登高望远,新未来还在极地、在太空。

日前,执行中国第40次南极考察任务的“雪龙2”号搭载着秦岭站考察队员穿越赤道返回北半球。为纪念中国极地考察40周年,返航途中还将开展相关纪念活动。

秦岭站所处的罗斯海区域保存着地球罕见的完整海洋生态系统,这里曾是中国南极科考布局的空白。今后,秦岭站将开展海洋生态、海冰、地球物理、陆地生态、鸟类等调查和观测监测,为评估南极生态环境和气候变化提供基础支撑。“随着中国的新科考站投入使用,人们越来越关注中国在南极洲的科研计划。”俄罗斯卫星通讯社说。

中国的航天计划更是国际关注的焦点。

2024年,中国航天预计实施100次左右发射任务,有望创造新纪录;中国首个商业航天发射场将迎来首次发射任务,多个卫星星座将加速组网建设。

惊叹于中国在太空探索方面与日俱增的影响力,美国哥伦比亚广播公司在梳理了中国近年的航天项目后评价:中国计划在2030年前实现中国人首次登陆月球的梦想,这将为太空探索掀开新篇章。

从太空到深海,中国还将继续奔跑在探索新领域的“第一梯队”。(记者 汪文正)

2024 年 4 月 19 日

美国能源部重大科技基础设施对我国开放服务趋势研究及查覓包養價格启示_中国网

中国网/中国包養发展门户网讯 新一轮科技革命和产业变革突飞猛进,科学研究范式正在发生深刻变革,重大科学发现和重要技术突破越来越离不开重大科技基础设施(以下简称“重大设施”)的支撑。重大设施是探索未知世界、发现自然规律的国之重器,是解决国家重大战略科技问题的主平台,已成为世界科技强国必争的战略高地。世界主要国家将重大设施作为开展科学技术交流、汇聚培养高端人才、展示国家形象、推动国际交流合作极其重要的平台。

重大设施多由公共财政资金投资建设和支持运行,其公共属性、资源稀缺性决定开放共享是其本质属性之一。为最大限度地释放重大设施服务效能,如何更好地推进重大设施开放共享成为各国关心的重要问题。目前,国内学者围绕重大设施的开放共享机制、管理平台、服务成效等开展了研究。其中,王慧斌和白惠仁、王立伟等、解志韬等分别从国家、区域、机构层面探讨了重大设施开放共享机制;夏金瑶等、邓泉等分别对EAST、CRAFT的开放运行机制展开探讨;陈娟等简要概述了中国科学院重大设施开放共享服务平台建设进展与服务成效。大多研究主要是总结国内外重大设施开放共享管理规定及相关举措,分析国内外特定重大设施的开放机制,少有学者从用户设施整体提供开放服务的角度对重大设施开放共享趋势开展研究。本文在分析美国能源部(DOE)国家重大设施开放共享特点的基础上,从我国对DOE重大设施的使用需求、成效和困境3个方面深入剖析其对我国科研用户的开放趋势,以期为我国重大设施的开放共享和布局建设提供参考借鉴。

美国能源部重大设施开放共享特点

DOE于2012年将由美国联邦政府资助,可为学术界、工业界等科研人员提供开放共享服务的重大设施定义为国家用户设施(user facilities)。截至2022财年,DOE用户设施有28个,覆盖先进科学计算(ASCR)、基础能源科学(BES)、生物和环境研究(BER)、聚变能源(FES)、高能物理(HEP)和核物理(NP)、加速器研发和生产(ARDAP)等领域。DOE于2015年开始建设用户项目/实验数据库,本文以2015—2022财年用户研究提案数据作为研究样本,分析得出DOE重大设施的开放共享特点。

设施长期连续开放共享,实行动态调整机制

美国于二战期间开始建设重大设施,在国家层面主要以DOE和美国国家科学基金会(NSF)开展全面持续的设施战略发展布局研究。美国联邦政府大力支持和鼓励重大设施对外开放共享。依据《联邦政府采购法》,重大设施管理运行机构应在保证实现重大设施科学目标、服务国家战略意志的同时,最大程度地向社会开放共享。DOE用户设施建设起步相对较早,历经翻新、升级改造,至今仍在运行并向社会各界提供开放共享服务,在2015—2022财年内有26个用户设施持续对外服务(图1)。其中,高通量同位素反应器(HFIR)自1966年运行至今,在材料辐照后测试、中子散射等方面发挥重要作用;斯坦福同步辐射光源(SSRL)自1977年建设并启用以来,在推动科学发现和技术创新方面功不可没。

DOE会动态调整其用户设施清单,由用户设施运行机构提出申请,经相关部门审查批准后成为用户设施。例如,加速器测试装置(ATF)于2015年3月被指定为用户设施,2022财年前隶属于高能物理(HEP)计划,后调整至加速器研发和生产(ARDAP)计划。先进加速器实验测试工具(FACET,2012年运行)为升级做准备,在2017—2019财年未对外开放。升级后的FACE包養網比較T-II通过用户设施申请流程,在2020财年初再次纳入用户设施清单。设施退役后将会从用户设施清单中移除,如托卡马克核聚变反应堆(Alcator C-Mod)。

发挥设施科技外交作用,国际竞合中把握主动权

科技外交代表国家通过科学连接世界的软实力。重大设施作为科技活动的重要承载平台,不仅在科技外交中发挥着重要的牵引作用,同时也是执行国家/地区对外合作政策的关键节点。美国积极推进重大设施开放共享,吸引了来自全球的优秀科学家,通过开展科技合作展现其科技大国的实力。然而,随着科技创新战略制高点的竞争日益加剧,美国对华科技合作在其政策调整背景下逐渐收紧。

DOE用户设施为近100个国家和地区研究人员提供开放共享服务,每年约接待来自70多个国家和地区的用户。在2015—2022财年间,其他国家/地区的使用频次合计为76 977次(即对外服务),占其总服务约16%。具体而言,高性能计算设施、中子设施、纳米科学研究设施的对外服务比例相对较低;聚变能源、高能物理和核物理计划设施对外服务比例相对较高(表1和图2)。

中国、英国和意大利等国的研究人员是其主要用户群体(图2)。使用频次总量位居第3—7位的国家均为七国集团(G7)成员,上述国家积极参与了DOE用户设施的建设与升级,2023年G7峰会发布联合公报中提出推进重大设施的数字化联网与国际化利用,以FAIR为原则推进研究成果的开放共享。值得注意的是,随着中美竞合关系的不断变化,中国利用DOE用户设施的次数出现明显下降。

推动设施远程访问服务能力,不断优化服务模式

DOE用户设施提供服务方式主要包括利用设施开展实验研究和利用设施数据服务开展研究两类。前者包括到访使用、远程使用、到访/远程混合使用3种形式;后者提供数据使用服务的设施包括大气辐射测量气候研究设施(ARM)、聚变能源设施(NSTX-U、DIII-D、Alcator C-Mod)、综合纳米技术中心(CINT)和先进加速器实验测试工具(FACET/FACET-II)。受新冠疫情影响,DOE用户设施在2020年初取消或推迟了部分服务计划,当年提供服务次数略有下降,到访使用设施次数减少明显(图3)。随后,DOE积极探索远程服务模式并进行相关技术研发以应对疫情冲击。

近年来,DOE在不断提升服务能力的同时积极探索服务新模式。2022年1月,DOE光源和中子7个用户设施组建相关工作组,探讨在研究人员无法到访使用的情况下,设施管理机构如何通过创造远程实验环境保证研究人员正常开展科研工作,实现设施协同和用户安全交互。全球新冠疫情肆虐倒逼设施服务模式转型,对远程服务、用户交互技术、信息技术与标准化等提出更高要求。

重视不同类型设施协同联动,重塑设施创新生态

实验观测和模拟分析获得的数据是数智科研时代的“金矿”,以光源为代表的平台型设施和科学数据基础设施正积极响应新科研范式挑战。在新冠疫情期间,研究人员利用直线加速器相干光源(LCLS)获取新冠病毒结构数据,并借助美国国家能源研究科学计算中心(NERSC)的先进算力和美国能源科学网络(ESnet)进行实时图像分析研究,加速新冠疫苗研发进程。2020年,5个光源设施的研发人员组建数据解决方案工作组,构建和开发相关软件、算法和网络基础设施,满足所有光源设施从实施数据分析到数据存储存档的共性需求。

DOE高度重视建设数据流连贯的重大设施科技创新生态系统,涉及科学数据、计算硬件、软件、传输网络、应用、安全等各方面。DOE于2020年启动、2023年正式实施综合研究基础设施(IRI)计划(图4),将利用专用科学数据网络,有效连接观测和实验国家用户设施、先进计算设施、高性能数据设施等科技资源,加速尖端观测技术手段和高性能计算分析能力的融合,并利用人工智能、数字孪生等新技术加速科学发现。

我国对DOE重大设施的使用需求和挑战

中国科研人员是DOE用户设施的重要用户群体

按用户研究提案使用频次统计,2015—2022财年,中国科研人员使用DOE用户设施的次数为9 978次,占其对外服务的12.98%包養。中国科研人员主要是通过提交研究提案经DOE用户设施审批后获得使用资格,直接利用设施科学数据开展研究的使用频次仅为510次。2015—2019财年,使用形式多为到访使用。受新冠疫情影响,2020—2022财年多为远程访问(图5)。从地域分布来看,我国30个省市的科研人员利用DOE用户设施开展相关研究,具体呈现为北京(3 387次)、上海(1 656次)、安徽(1 490次)、湖北(653次)、甘肃(399次)科研人员的使用频次相对较高。这与我国综合性国家科学中心的布局高度契合。2016—2017年,国家发展和改革委员会、科学技术部联合先后批复上海张江、安徽合肥、北京怀柔的综合性国家科学中心建设方案。《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》提出建设重大科技创新平台,支持北京、上海、粤港澳大湾区形成国际科技创新中心,支持有条件的地方建设区域科技创新中心。成渝地区、武汉、西安先后获批建设国家科技创新中心,其中西安同时获批建设综合性国家科学中心。

我国高校、科研院所、企业均在DOE用户设施上开展过研究工作,使用频次较多的机构如图6所示。147所高校共使用6 304次;77家科研院所共使用    3 634次包養,其中中国科学院使用1 852次;中科合成油技术股份有限公司、腾讯量子实验室、安进中国3家企业共使用10次。其中,北京高压科学研究中心使用最多的设施为先进光子源(1 218次),占我国用户使用该设施频次比例为40.29%,主要用于研究新型铁基超导体、热电材料、碳纳米材料等的结构与性能。中国科学技术大学则较多使用连续电子束加速器设备(226次)、先进光子源(216次)和国家能源研究科学计算中心(166次),主要研究金属玻璃、电阻开关器件、超导纳米线、能源相关材料结构与性能等。北京大学使用国家能源研究科学计算中心(184次)相对较多,研究涉及铁基超导体、磁约束聚变等离子体等;清华大学则较多使用先进光源(86次),研究涉及石墨烯、拓扑绝缘体、高温超导体等。中国科学院等离子物理研究所使用DIII-D国家聚变设施(262次)较多,与DIII-D装置开展联合物理实验。

DOE用户设施支撑我国科研人员取得一定研究成效

我国研究人员通过使用DOE用户设施,在获得与国际高水平科研团队交流合作的同时,取得一批高水平科研成果,一定程度上促进了我国科技创新能力的提升。我国多个获得国家级奖项的研究成果不仅利用了我国的国家重大设施,还借助DOE用户设施进行补充研究。例如,中国科学院大连化学物理研究所在2015—2016财年利用上海光源、合肥同步辐射装置和美国先进光源开展二维原子晶体限域催化的理论研究,其所在团队的研究工作“纳米限域催化”于2020年荣获国家自然科学奖一等奖。荣获国家自然科学奖二等奖的“铁基超导体电子结构的光电子能谱研究”利用了合肥同步辐射装置、斯坦福同步辐射光源进行研究。

中国科学院上海应用物理研究所、中国科学技术大学的研究人员参与美国布鲁克海文实验室主导的STAR国际实验合作组,利用相对论重离子对撞机、国家能源研究科学计算中心开展实验和计算,相关成果支撑了“重离子碰撞中的反物质探测与夸克物质的强子谱学与集体性质研究”,获得了国家自然科学奖二等奖。清华大学、中国科学院近代物理研究所等其他9家机构是STAR国际合作组成员。此外,我国多位中国科学院院士及国家自然科学奖获得者在相对论重离子对撞机、斯坦福同步辐射光源、先进光子源、先进光源等DOE用户设施开展过研究。

我国使用DOE用户设施资格呈现被收紧趋势

由于新冠疫情的影响,DOE用户设施的服务能力在2020财年有所下降。但随后通过迅速调整设施服务策略,如远程访问和虚拟交互,提高了服务能力和效率。2021财年整体已恢复至正常水平,其中远程使用占比约为66%;2022财年设施服务能力明显增强,服务次数较2021财年提升约16%,远程使用占比下降至54%。而我国在2017—2019财年使用DOE设施次数较多,而近3年使用次数显著减少(图7)。2018财年,我国使用DOE用户设施的频次为1 813次,占其对外服务17%;2022财年,我国使用DOE设施950次,占比仅为9.53%。降幅最大的是先进光子源,近3年占其对外服务比例由2017—2019财年的约40%降至约17%。

非美国用户使用DOE用户设施前,需接受进一步的安全和许可审查,判断其研究中的相关技术是否需要美国出口管制许可。近年来,美国商务部工业安全局陆续将我国多家企业及科研机构列入管制实体清单,在一定程度上影响其使用DOE用户设施。例如,北京航空航天大学、西北工业大学、电子科技大学、四川大学、中国工程物理研究院5家研究机构于2015年前被列入管控实体清单,2015—2022财年共获得21次DOE用户设施使用资格。北京高压科学研究中心等多家机构于2020年进入实体清单,导致其2022财年获得的使用资格次数较2018财年大幅减少。特别是北京高压科学研究中心,其使用频次由2018财年的469次降为0次,近2年都未获得使用资格。2023年,美国国会参议院情报委员会推进DOE研究安全措施立法,将要求审查来自敏感国家的DOE国家实验室访问人员,或将持续影响我国科研用户利用DOE用户设施。

我国使用DOE科学数据基础设施资格受限

美国将高性能计算、人工智能、量子信息等作为其国家战略,将我国视为重要竞争对手。2015—2022财年,我国科研人员使用DOE科学数据基础设施的频次远低于其他国家。在此期间,我国使用阿贡高性能计算设施46次,远低于英国(236次)和瑞士(166次);使用橡树岭高性能计算设施44次,远低于英国(211次)和德国(154次);使用国家能源研究科学计算中心次数相对较多,但仍低于英国。同时,我国在整个数据分析阶段未获得过ESnet使用资格,但印度、韩国、瑞士、丹麦等9个国家使用过该设施。该高性能科学数据网络设施核心服务是提供国际科学数据通信,通过与其他设施协同合作使得DOE研究人员及其国际合作者高效利用人工智能、高分辨率仪器图像、长期科学研究等产生的海量数据。

2022年10月,美国商务部将某些先进的高性能计算机芯片和含有此类芯片的计算机商品纳入其商业出口管制清单,并限制国家超级计算长沙中心等28家实体获得其高性能计算技术和服务。2023年2月,美国商务部又将无锡国家并行计算机工程技术研究中心、无锡高等技术研究院等多个机构加入实体清单。今后,我国利用DOE高性能计算设施可能将进一步受到限制。

我国重大设施开放服务存在的不足

平台型设施支撑能力相对不足

我国重大设施建设起步于20世纪60年代,但整体来看,建设进程相对较慢,与国际发达国家相比支撑能力仍存在不小差距。2015年前,我国仅有3个平台型设施处于运行状态(表2),高能同步辐射光源、合肥先进光源和硬X射线自由电子激光装置仍在建设。“十二五”以来,我国加快了重大设施的布局速度,但实际支撑能力不足。以平台型设施为例,与发达国家相比,我国在实验能力布局方面存在较大差距。目前,我国3个同步辐射光源共运行约60个实验站,实验站数量仅为日本(约180个)的1/3,不到美国(约200个)的1/3。今后我国重大设施需要维持高速稳定的设施建设和能力提升的发展态势,以缩小和发达国家在科技基础支撑能力方面的差距。

远程服务对提高重大设施使用率、扩大开放共享和降低成本等方面发挥着重要作用,服务模式的转型是必然发展趋势。然而,除数量外,我国平台型设施支撑服务用户的方式单一,可提供远程服务的设施和实验站数量均相对较少。北京同步辐射装置真空紫外光谱实验站、小角散射实验站和高压实验站可实现用户远程实验模式。上海光源生物大分子晶体学实验站2021年利用自主研发的机械手、数据采集系统等实现远程实验开放。

科学数据创新生态亟待完善

自20世纪80年代起,我国大力推动科学数据共享与数据基础设施建设。截至2023年12月,我国已按学科领域部署,建设了高能物理、空间科学等20个国家科学数据中心及14个国家超级计算中心。我国在科学数据资源建设方面已经取得一定成果,但在建设中相对侧重网络、算力等设施“硬”条件建设,对科研数据、知识库等科学数据的“软”内容建设重视和支持不足,与美国科学数据基础设施布局和能力建设相比仍有较大差距。整体上,科学数据产生、传输、存储和计算能力割裂,未能营造融通数据生态,科学数据的价值未能被充分挖掘,影响科学发现效率。

具体来看,重大设施科学数据管理尚处于起步阶段,目前仍未形成统一的科学数据标准,难以实现数据高效汇聚共享。国家科学数据中心当前依旧存在各自为政、条块分割现象,尚停留在科学数据汇交阶段,在综合治理与应用、满足FAIR原则、共享等方面仍有较大的发展空间。我国当前的网络信息环境和条件有限,尚不能满足海量科学数据传输需要,用于科学数据存储、数据分析挖掘的软硬件设备仍受制于发达国家。国家超级计算中心多采用国外系统架构和应用软件,软件开发能力较弱,且应用场景不完善,多集中于气象气候、石油勘探、宇宙模拟等传统领域,对数据密集型科学研究支撑能力较弱。2023年10月,我国成立国家数据局统筹推进数字基础设施布局,有助于打通我国科学数据链路,完善数据治理体系。

思考与启示

科技基础能力是国家综合科技实力的重要体现,是实现高水平科技自立自强的战略支撑。作为科技基础能力建设的重要组成部分,我国高度重视重大设施的建设与开放共享,以期在新一轮科技革命和产业变革中占据先机、赢得主动。重大设施的高水平建设和运行,不仅可为前沿科学研究探索、解决关系国计民生和国家战略安全等关键核心问题提供重要支撑,还可汇聚培养高端人才,彰显国家科技创新实力。目前,我国重大设施发展取得长足进步,但对标科技强国、教育强国建设仍有不小差距,急需加快建设进度,提升服务效能。基于上述研究分析,提出3点建议,以期为我国重大设施建设布局与开放共享提供参考。

不断提升重大设施综合性能和服务效能,支撑科技强国建设。推进重大设施布局建设对我国实现高水平科技自立自强具有重大战略意义。2022年5月,美国国会参议院情报委员会召开了“对美国国家安全的威胁:反制中国的经济和技术计划”公开听证会,拟修改“基础研究”的定义,并提出当基础研究发展一旦达到管制技术的水平和类型,应与受控技术进行同样的管控。若该计划执行,我国有可能无法再使用DOE用户设施,将对我国科研活动产生一定影响。同时,为获得美国设施使用资格,我国用户需将研究项目提案提交给对方进行评审,存在一定程度的科技安全风险。因此,建议充分评估未来我国用户使用重大设施的需求,合理规划重大设施布局,并在保证重大设施高质量和高水平的前提下,适当加快建设进度,从科学目标出发不断提升设施的能力水平和先进性,适应我国高质量科技发展的需要。

加速重大设施的数据融合、使用和共享生态建设。良好的科学数据生态环境是驱动重大科学发现和重要技术突破的新引擎。建议根据科研发展需求,部署新的科学数据基础设施,统筹考虑重大设施建设过程中“软环境”和“硬条件”的协同布局与管理,进一步推进人工智能、机器学习、深度学习等技术的应用,以实现我国重大设施和国家科学数据中心的互联互通,加速打破科学数据壁垒,实现跨域融合。可考虑将科学数据基础设施纳入国家重大设施管理体系,针对其建设、使用及管理特点,制定相应的申报、评审和管理规则。进一步提升我国国家高性能计算设施的软件研发和应用能力,构建贯通科学数据从产生到价值挖掘、应用的全生命周期科研生态环境,积极推进重大设施数智化转型,支撑数据密集型科研范式的转变。

提升重大设施国际化潜力,加强高水平合作与交流。目前,我国采用国际合作方式建设的设施数量相对较少,所累积的国际用户群体规模也相对较小。大部分国际合作停留在一般性的交流合作上,缺少实质性的国际资金、技术和科技人力资源投入。受国际形势影响,美国已减少或者限制我国用户使用其重大设施开展科学研究的机会,未来我国国际科技合作将面临更加严峻的挑战。建议重大科技基础设施布局充分考虑国际化潜力,发挥科技外交优势,积极谋求依托设施牵头发起国际大科学计划和大科学工程;同时进一步拓展我国科研用户使用欧洲、亚洲等国家重大设施的渠道,如欧洲X射线自由电子激光、欧洲同步辐射光源等;加强重大设施与国内外科研机构、企业的深度合作,重视潜在用户的培养,进一步拓展国际用户群体,持续提升设施开放共享服务能力。

(作者:董璐、李宜展、王学昭、李泽霞,中国科学院文献情报中心 中包養平台推薦国科学院大学经济与管理学院信息资源管理系;李云龙,中国科学院前沿科学与教育局。《中国科学院院刊》供稿)